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Abstract 0 Depending on the concentration of a suspension, it will 
exhibit one of three sedimentation patterns pertaining to  low, inter- 
mediate, and high concentrations of solids, respectively. Of these, 
only the dilute region has been thoroughly investigated in the past 
from a theoretical and experimental standpoint. Pharmaceutical 
suspensions are mostly of the intermediate type. It is shown here 
that if the models by Kynch, Michaels, and Bolger pertain, and if 
the sedimented cake experiences an exponential compaction from 
the onset, experimental data are consistent with theory and lead to 
the relation: x = xo exp [-kt1 + C.[1 - exp (-kt)l.exp [ - w f ] ,  
where k is a sedimentation rate constant pertaining to a constant 
density plug, and o is a sedimentation rate constant pertaining to 
the cake. It has also been found that, empirically, the sedimentation 
heights in the initial stage may be presented by the relation: [xo2 - 
x2] = pt, where x denotes height, and t time. 
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Stokes’s law has been known for over a century (1) 
but, nevertheless, as pointed out by Kynch (2), a satis- 
factory theory of sedimentation of multiparticle, coarse 
suspensions has never been put forth. Although it 
might appear that sedimentation should follow Stokes’s 
law, Higuchi (3) and Hiestand (4) have shown that 
both in peptized and flocculated systems such a simple 
point of view is in agreement with neither theory nor 
fact. In most of the investigations reported in the past, 
attempts have been made to modify Stokes’s law in some 
way (5-9) to account for sedimentation behaviors. The 
more dilute a suspension is, the more closely should the 
fall of each particle or floc adhere to Stokes’s law. 
Pharmaceutical suspensions are, however, rarely very 
dilute, and their behavior would not be expected to fall 
in this category. 

Michaels and Bolger (10) have reported a linear pat- 
tern for sedimentation rates for dilute suspensions 
(< 1 %). These authors, as well as Haines and Martin (7), 
point to the fact that very concentrated suspensions 
follow yet another pattern, a fact that will not be a point 
of discussion here but will be reserved for a subsequent 
study (1 1). Suspensions of “intermediate” concentra- 
tion, however, have a downward curvature, i.e., the 
sedimentation boundary moves downward with greater 
and greater velocity until a certain critical height, Ha, is 
reached, at which time ( to)  the rate decreases abruptly. 

Examples of this pattern may be found described 
occasionally in pharmaceutical literature, the work by 
Benedict et al. (12) being an example. Pharmaceutical 
suspensions are mostly of the intermediate type. They, 
also, are of the floc-aggregate type described by Michaels 
and Bolger (lo), and the considerations in the following 
apply to this type system. 

Robinson (8) considered the sediment to  be of uni- 
formly increasing concentration during the descent of 

the boundary; Ward and Kammermeyer (9) showed 
that the ensuing equations apply only to  special systems. 
Michaels and Bolger (10) and Gaudin and Fuerstenau 
(13, 14) have, furthermore, demonstrated that the den- 
sity of the sediment remains constant a t  and for some 
(time-dependent) distance below the boundary, with a 
cake of higher density building up at the bottom, and 
that, therefore, the system is uniform at  time zero only. 
The terms cake and sediment will be used for these two 
phases in the following. These views correlate with the 
simplest of the models proposed by Kynch (2). 

From a pharmaceutical point of view, it is important 
to determine the pattern (and predict ultimate heights) 
of suspension sedimentation. It is one of the objectives 
of this communication to establish graphical means 
of describing the descent of the sedimentation 
boundary in the initial stage, i.e., prior to  the critical 
height, Ho. Another objective is to attempt to correlate 
the initial sedimentation pattern with existing views on 
the sedimentation process and arrive at a general equa- 
tion for the initial sedimentation of flocculated suspen- 
sions in the intermediate concentration range. 

EXPERIMENTAL 

The system used here is the same as that employed by Michaels 
and Bolger (10) except that concentrations are higher. At higher 
concentrations, air entrapment might be a source of variation, and an 
apparatus such as shown in Fig. 1 was used. Previous investigators 
of dilute suspensions (8) have pointed out that initial turbulence was 
a source of variation, without spelling out the extent of this varia- 
tion. The method of providing a uniform starting suspension used 
here was the same as that employed by Michaels and Bolger (10) 
(turning the tube end-over-end 10 times). This, of course, causes in- 
itial turbulence; the extent to which this affected results was gauged 
by performing each experiment at least three times. 

The size of aggregates is a dynamic property and forming the 
aggregate under high shear (Waring blender) will not necessarily 
give a representative floc-aggregate (10) in the sense that the size will 
subsequently remain constant during settling. Some experiments 
were, therefore, conducted by allowing a mildly agitated suspension 
to equilibrate. The sedimentation experiment was repeated until the 
curves were reproducible. This appeared to require about 24 hr. 
Reproducible curves all show the convexity noted in the top curve 
of Fig. 2. Where suspensions were made in a blender, they 
were also checked on succesive days until the sedimentation rates 
had changed to a constant value. 

The general procedure used, then, was as follows: 25 g. of colloidal 
kaolin NF1 was rinsed with 500 ml. of water which had previously 
been distilled over potassium permanganate. The volume was then 
adjusted to 500 ml. and the suspension transferred to a tube of the 
type shown in Fig. 1. The suspension was thoroughly deaerated by 
applying aspirator vacuum to one of the outlets of the two-way 
stopcock. The tube was occasionally turned end-over-end, and 
finally after no more visible escape of air, the tube was turned end- 
over-end 10 times, then opened to the atmosphere and placed 
vertically; the movement of the interface was followed by use of a 
high precision cathetometer2 and an electric timer. After 24 hr., the 
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Figure 1-Apparatus set-up for sedimentation studies. 

tube was again evacuated, turned end-over-end 10 times, opened to 
the atmosphere, and the procedure carried out again. This was then 
repeated until three successive, reproducible curves were obtained. 

Part of the supernatant was then replaced by an equal volume of 
glycerin and the procedure repeated. Data were obtained at four 
glycerin concentrations; at each point where supernatant was re- 
placed by glycerin, the viscosity of the supernatant was checked by 
means of an Ostwald-Fenske viscometer. All experiments were 
carried out in a constant-temperature room (25 f 0.3"). In one set 
of experiments, lower (constant) temperatures were obtained by 
circulating constant temperature water through the jacket of the 
tube. It should be noted that the apparatus cannot be insulated and 
that good temperature control throughout the length of the tube is 
only possible at temperatures less than 5"  above or below the tem- 
perature of the surrounding area. 
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Figure 2-Sedimentation curves in water as a function of time of 
a suspension made at low shear. Triangles and small circles by the upper 
curve are points from different runs. 
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Figure SSedimentation curues in 10% u/v glycerin in water at various 
temperatures. The temperature was uaried from experiment to experi- 
ment as a means of varying the uiscosity. 

A note on some visual manifestations may be in order here. The 
interface is well defined and horizontal during the free-fall period. 
When the point of transition into the second, slower phase of the 
sedimentation is approached, a fairly heavy concentration of fine 
particles appears above the interface for a short while. At the 
critical time to, which is reproducible to within 5 % ,  the surface sud- 
denly becomes ragged, and at that particular time the second phase 
starts. The patterns associated with thesecond phase are the subject 
of a separately reported study (1  1). A set of runs was performed at 
7,9, and 11 by weight of kaolin in water as well. 

RESULTS AND DISCUSSION 

All of the tested systems showed convex curvature in the initial 
phase, such as shown in Figs. 2 and 3. This evidently differs from 
the linearity exhibited by more dilute systems. 

If the sedimentation patterns found here for flocculated suspen- 
sions in the intermediate concentration range are analogous to 
those suggested for dilute systems by Kynch (2), Michaels and 
Bolger (lo), and Gaudin and Fuerstenau (13-15), then, at time t, 
there will be a-centimeters of suspension containing the initial volume 
fraction $0 of solids, and b-centimeters of suspension containing the 
volume fraction in the cake (6). The height of the sediment will be 
x = a + b. As time progresses, a will diminish at the expense of b. 
The U-values deduced from the data by Michaels and Bolger (Fig. 
6, Reference 10) are reproduced in Fig. 4, and it is seen that an equa- 
tion of the form a = xo exp [-kt] is a good fit. The decrease in a 
may, therefore, be considered to be of the form: 

a = xo exp [-kt] (Eq. 1) 
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Figure &The graph shows the result of logarithmic treatment of 
data reported by Michaels and BoIger (10). If the logarithm of the 
length of the constant-density phg is plotted as a function of time, 
then a straight line results, as shown in the plotting used here. The 
data refer to a 1.9 calcium oxide suspension. 
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To describe the time dependence of x, it is necessary to know how 
b changes with time. It has been shown (I  1,16) that the cake (in the 
final phase) experiences an exponential decay, so dbldt = -w .b .  
In the initial phase, it also experiences a build-up from the temporal 
contribution of the sediment. If the cross-sectional area is de- 
noted Q ,  then the amount of solids in the cake at time t is b . Q . 4 ;  
the amount of solids in the suspension above the cake is Q . a . i O  
(since it contains the initial volume fraction of solids). The original 
amount of solids was xo' Q.+o ,  so material balance dictates that 
Q . a . 4 0  + b . Q . 4  = x o . + o . Q ,  or a.+o + b . 4  = xo.@o. This may 
be rewritten: 
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Figure 6-Sedimentation data from 5 kaolin suspensions in aqueous 
giycerin vehicles, plotted according to Eq. 7. Curve notations are 
shown in Table I ,  indicating the employed k-ualues and the viscosity 
corresponding to each line. 

Table I-k- and U-values a t  Various Viscosities 

Compaction 
Curve in Viscosity, Rate Constant Constant - .  

Fig. 6 cps. k, min.-l, w, min.-l, 
f 10-3 + 10-4 

A 
B 
C 

0.87 0.035 0.0055 
0.96 0.032 0.0049 
1.12 0.028 0.0046 

D 1.19 0.024 0,0046 
E 1.35 0.023 0.0039 
F 1.40 0.022 0.0032 

2.40 0.013 0.0023 

The total change of b with time, then, is: 

Inserting Eqs. 1 and 2 into Eq. 3 yields: 

which has the solution: 

b = C . ( l  - exp[-kt]} . exp[-wt] (Eq. 5 )  

The expression for x = a + 6 ,  then is: 

x = x 0 e x p [ - k t ] f C ~ ( 1  -exp[-kt]) .exp[--wt] (Eq.6) 

For the purpose of plotting, this is rearranged: 

t + log C (Eq. 7) - - - . x - xoexpt-ktl 
1 - exp[-kkt] ) - 2w3 

The data may now be plotted using estimates of k,3 and by apply- 
ing successive values of k ,  a best k-value (i.e., the k-value that im- 
parts linearity4 to the data when treated according to Eq. 7) can be 
arrived at. An example of this is shown in Fig. 5. If done manually, 
two or three k-values are arrived at (e.g., 0.034, 0.035, and 0.036 
min.-l) which produce lines without apparent curvature. The 
value giving the best statistical fit (17, 18) is then chosen. With the 
aid of a computer, the iteration procedure can be accom- 
plished rapidly. Figure 6 and Table I show data at various 
viscosities plotted according to Eq. 7. With the proper k-value, 
linearity prevails to within I5  cm. of the critical height. 

The dependency of k on the viscosity is of interest, and Fig. 7 
shows that the logarithm of the rate constant is linearly related to 
the logarithm of the viscosity. The slope is reasonably close to minus 
unity, so that k is inversely proportional to viscosity. This type be- 
havior might suggest that Stokes's law, with some modification, 
applies, since the stokes velocity is also inversely proportional to 
viscosity. In a suspension, the forces involved are both of van der 
Waals and electrical nature (15, 19-23). In causing flocculation 
they might be playing a part directly in the sedimentation process, i.e., 
the rate constant might be associated with a flocculation rate. 
By such a visualization, the initial perturbance causes an equilib- 
rium floc, A j  (containing on the average j single particles) to be 
broken up into smaller flocs, Ai. This, of course, is a highly simpli- 
fied picture, because A ,  -+ A; could not be a single-step process. 
Furthermore, both i and j would present averages of a population 
of numbers. 

It would also have to be assumed that A j ,  once formed, would 
appear immediately in the cake; in spite of these shortcomings, the 
viewpoint explains the inverse relationship between rate constant 
and viscosity, and can not be eliminated as a possibility. W. Higuchi 
et al. (24, 25) have shown that k,, approaches some factor times 
kll, the rate constant for combination of single particles, and have 
also shown that kll = 8koT/3q. It is not possible to test this hypothe- 
sis on more concentrated systems with the data presented here; 

First estimates of k (and o) can be obtained from Eq. 6 by feathering 
The value giving the best statistical fit (17, 18), i.e., the one producing 

technique if k and w are not of the same order of magnitude. 
the least residual s u m  of squares. 
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Figure 7-A plot of the logarithm of the rate constant k versus the 
logarithm of the viscosity. The drawn line has a slope of minus unity: 
k is in units mk-1 and viscosity is in cps. 

to such an end it would be necessary to perform experiments where 
the initial perturbance (deflocculation) could be varied in a quantita- 
tive way. Experimental procedures in previous publications as 
well as this work have simply been designed to achieve a repro- 
ducible perturbance, so that data are comparable; it may be, for the 
reasons quoted, that data may not be comparable from author to 
author. 

The values of w are obtained from the slopes in Fig. 6 and are 
listed in Table I. The values are plotted as a function of viscosity 
in Fig. 8. The general range of the U-values is in good agreement 
with data on cake contraction reported by Carstensen and Su (1 1) 
who found wl-values in the range of 0.2-0.4 hr.-l (i.e., 0.003-0.007 
min.-I). It would appear from Fig. 8 that u is inversely proportional 
to the viscosity. 

At higher concentrations the critical height, Ho, increases and the 
curves show less distinct breaks. Evaluation of data by a. 7 be- 
comes less exacting, and k values are at best 3~20%. The k-values 
seem to taper off at a value of 0.01 hr.-1 as shown in Fig. 9, but 
U-values decrease with increasing concentration. 

As a last comment on the treatment of the preceding, attention 
should be called to the fact that an obvious approximation is made 
in assuming the cake to be of uniform concentration along the 
entire length b. However, attempts to present 6 as a function of 
x lead to forms of Eq. 3 that cannot be solved analytically. That 
the approximation is not unrealistic is apparent both from the X-ray 
data by Gaudin and Fuerstenau (13, 14) and by the linearity which 
can be achieved by inserting proper k-values in Eq. 7. On the other 
hand, deviation from linearity close to the critical height undoubt- 
edly reflects the effect of the approximation. 

It is often convenient, in the laboratory, to have a rapid method 
available for plotting; the treatment just outlined, clearly, is not 
rapid. For routine plotting, the initial convex portion of the curve 
may be approximated by a parabola, i.e., xo2 - x 2  = Pt, where xo 
is the initial height. Data are plotted in this fashion in Figs. 10 and 
11, and, with exception of the initial turbulent period (8), the data 
fit such a relationship well. It should be noted that this means of pre- 
sentation is purely empirical, and that the comments to follow may 
not have general applicability but may merely apply to the kaolin- 
glycerin-water system. The value of this type of practical approach 
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Figure 8-A plot of the compaction-rate constant, U, versus rec@rocal 
L-iscosity . 
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Figure 9-Sedimentation data from 7 ,  9 ,  and 11 kaolin suspensions 
in water, plotted according to Eq. 7, all using a k-estimate of 0.01 
min.-'. 

is that it allows rapid extrapolation and implies at what time the 
critical height is being approached. 

Analogies have been made in the past (26) between the fall of the 
boundary to the flow of liquid through a porous plug in an infinitely 
long medium. By applying the Poiseiuille equations such a view 
would require that V/t  = irPr4/8Lq, where V/t is volume flow per 
unit time, P is pressure head, r is a capillary radius parameter, and L 
is the length of the plug. Since each milliliter flowing through the 
plug is associated with a height decrease of l/?rR2, the velocity of 
the interface would be: V/( t sR2)  = (Pr4)/(8L7R2) = @ / ( 2 . L )  = 
(dx)/(dt), where R is the radius of the tube and the sedimentation con- 
stant fl = Pr4/47R2. If L approximately equals x, a formal integration 
would yield x 2  - xo2 = -Pt, assuming the pressure head to be con- 
stant. This is not theoretically justifiable. Although, as required by the 
treatment, the sedimentation constant appears to be inversely pro- 
portional to the viscosity, it should also be inversely proportional 
to RZ; data reported elsewhere (11) show this not to be the case. 
The squared-heights fitting is, therefore, only empirical. 

7 8l 

20 40 60 80 100 120 140 
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Figure 10-Squared-heights curues for 5 % kaolin suspensions in 10% 
uIu glycerin in water at three temperatures. 

6 Use of the Kozeny-Carmen equation (27, 28) does not change the 
consequences of the arguments outlined. 
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Figure 11-Squared-heights curves for 5 
water and 5 

kaolin suspensions in 
v/v glycerin in water. 

SUMMARY 

By assuming the sedimentation process to consist of the descent 
of a constant density plug and simultaneous build-up of a higher 
density cake, it has been shown that sedimentation data are con- 
sistent with theory, if it is assumed that the exponential contraction 
of the cake is initiated at zero time. The point in time, fa ,  the critical 
time, where the boundary of the sediment and the cake coincide, 
denotes the end of the initial stage of sedimentation. 

Empirically, sedimentation data in the initial stage are amenable 
to plotting by graphing the square of the height as a function of time. 
The slope of these lines appears to be proportional to  the ratio of 
density difference to viscosity. 

NOMENCLATURE 

a = length of sediment (cm.) (constant-density plug). 
b = height of cake (cm.). 
C = preexponential factor for cake contraction (cm.). 
Ha = critical height (cm.) at which point the first phase 

k = rate constant for sediment (min.-1). 
L = length of constant-density plug falling through infinitely 

P = pressure head (dynes/cm.Z). 
R = radius of tube (cm.). 
to = time at which Ha occurs; critical time (min.). 
V = volume (cm.3). 
x = height of sediment interface above bottom of tube (cm.). 
xo = initial height (cm.). 
@ = sedimentation constant (cm.2/min.). 
q 
9 

of sedimentation ends and the second phase starts. 

long column of liquid (cm.). 

= viscosity, centipoise or poise, as indicated. 
= volume fraction of suspended matter in cake. 
= volume fraction of suspended matter in sediment. 

w = compaction rate constant (min.-I), i x . ,  exponential decay 
constant for cake height. 
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